Modelling Population Diffusion#

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import PillowWriter
from matplotlib import cm
import numba
from numba import jit

Theory#

The hunting and diffusion equation is given by,

\[ru\left(1-\frac{u}{K}\right) - hu + D\nabla^2 u = \frac{\partial u}{\partial t}\]

Using finite difference method,

\[ru_{i,j}^{(t)} \left(1 - \frac{u_{i,j}^{(t)}}{K} \right) - hu_{i,j}^{(t)} + D \left( \frac{u_{i+1,j}^{(t)} -2u_{i,j}^{(t)} + u_{i-1,j}^{(t)}}{\Delta x^2} + \frac{u_{i,j+1}^{(t)} -2u_{i,j}^{(t)} + u_{i,j-1}^{(t)}}{\Delta y^2}\right) = \frac{u_j^{(t+1)} - u_j^{(t)}}{\Delta t} \]
\[(r-h)u_{i,j}^{(t)} - \frac{r(u_{i,j}^{(t)})^2}{K} + D \left( \frac{u_{i+1,j}^{(t)} -2u_{i,j}^{(t)} + u_{i-1,j}^{(t)}}{\Delta x^2} + \frac{u_{i,j+1}^{(t)} -2u_{i,j}^{(t)} + u_{i,j-1}^{(t)}}{\Delta y^2}\right) = \frac{u_j^{(t+1)} - u_j^{(t)}}{\Delta t} \]

Can rearrange to solve for \(m+1\)

\[ u_j^{(t+1)} = u_j^{(t)} + \Delta t\left[(r-h)u_{i,j}^{(t)} - \frac{r(u_{i,j}^{(t)})^2}{K} + \frac{D}{\Delta x^2} \left( u_{i+1,j}^{(t)} + u_{i-1,j}^{(t)} + u_{i,j+1}^{(t)} + u_{i,j-1}^{(t)} -4u_{i,j}^{(t)} \right)\right] \]

Implementation#

Initialise space grid with random spawns

n = 100
i = 5
coords = np.array([(np.random.randint(i, n-i), np.random.randint(i, n-i)) for _ in range (50)])
init_population = np.zeros((n, n))
for x, y in coords:
    init_population[x,y] = 2
fig,ax = plt.subplots()
vmin,vmax = int(np.min(init_population)), int(np.max(init_population))
contourf_ = ax.contourf(init_population, levels=np.linspace(vmin,vmax,400),extend='max')
cbar = fig.colorbar(contourf_,ticks=range(vmin, vmax))
_images/eadc379d6910e92c0a4743d53afbc3bcbe21d0c4aa4d45aa236dcfdb12d413ee.png

diffusion constant

D = 0.01

Set the dimensions of the problem

x = 1
dx = 0.05
dt = 0.0001
total_time = 20 # sec
times = 36000*7#int(total_time/dt
times_snapshot = 3600
f = int(times/times_snapshot)
population_frames = np.zeros([times_snapshot, 100, 100])
population_frames[0] = init_population
population_size = np.zeros(times)
  • Number of differential equation update iterations times

  • Number of snapshots we will take times_snaphot.

  • The array of snapshots we will take of the turkey

print(f'Snapshot taken every {f}th frame.')
print(f'Total time of simulation is {times*dt} sec.')
print(f'Snapshot taken every {f*dt} sec.')
Snapshot taken every 70th frame.
Total time of simulation is 25.200000000000003 sec.
Snapshot taken every 0.007 sec.

Compute \(s = \alpha \Delta t / \Delta x^2\). \(s\) needs to be much less than 1/4 for this to work.

D * dt / dx**2
0.00039999999999999996

Solving the PDE#

Set up numba function

@numba.jit("(f8[:,:,:], f8, f8, f8)", nopython=True, nogil=True, fastmath = True)
def solve_pde(environment, K, r, h):
    cs = environment[0].copy() #current state
    length = len(cs[0])
    density = np.zeros(times)
    density[0] = np.average(cs) # average population density
    cf = 0 # current frame

    for t in range(1, times):
        ns = cs.copy() # new state

        for i in range(1, length-1):
            for j in range(1, length-1):
                ns[j][i] = cs[j][i] + D*dt/dx**2 * (cs[j+1][i] + cs[j-1][i] +\
                                                    cs[j][i+1] + cs[j][i-1] -\
                                                    4*cs[j][i]) +\
                                                    dt*((r-h)*cs[j][i] - (r*cs[j][i]**2)/K)

        ns[:,0] = ns[:,1] # left neumann
        ns[:,-1] = ns[:,-2] # right neumann
        ns[0,:] = ns[1,:] # top neumann
        ns[-1,:] = ns[-2,:] # bottom neumann
        
        density[t] = np.average(cs)
        cs = ns.copy()
        if t%f==0: # take snapshot
            cf = cf + 1
            environment[cf] = cs
            
    return environment, density

Get population snapshots and population size over time plot

K, r, h = 1, 0.9, 0.2
population_frames, population_sizes = solve_pde(population_frames, K, r, h)
plt.plot(np.linspace(0, times*dt, times), population_sizes)
plt.xlabel('Time (s)')
plt.ylabel('Total Population')
population_sizes[-1]
6708.324283473497
_images/068864e05a3d70822d73b43a3c29ae6db591c5cdc69bd7c8ebf718e91e69b65c.png

Get population snapshots and population size over time plot

The final snapshot

my_cmap = plt.get_cmap('inferno')
plt.figure(figsize=(8,8))
a = plt.contourf(population_frames[-1], 100, cmap=my_cmap)
plt.colorbar(a)
<matplotlib.colorbar.Colorbar at 0x1d940b32440>
_images/29aa3ee1c697cb3b3e8226fb419f6b5930cb1c225013422078f9afda4220fd80.png
my_cmap = plt.get_cmap('inferno')
plt.figure(figsize=(8,8))
a = plt.contourf(population_frames[-1], 100, cmap=my_cmap)
plt.colorbar(a)
<matplotlib.colorbar.Colorbar at 0x1ddff8f6f50>
_images/2761478362d2401a4442a41881c56940ba98639891cf0511d51267f8a2b3c02a.png
np.save(f'modelled data/hunting/neumann_r9', population_frames)

Make animation

def animate(i):
    ax.clear()
    a = ax.contourf(population_frames[10*i], 100, levels=np.linspace(0,vmax,50), cmap=my_cmap) #put vmin and vmax
    plt.title(f't = {10*i*f*dt:.2f} sec')
    ax.set_xticks([]) 
    ax.set_yticks([]) 
    return fig,

fig, ax = plt.subplots(figsize=(8,6))
fig.colorbar(a, ax=ax)
ani = animation.FuncAnimation(fig, animate,
                               frames=359, interval=50)
ani.save('population_neumannr9.gif',writer='pillow',fps=30)
_images/ff1b040ca3afb5592e5d96e33d3dc287fb32fd750893dc7c4fe1d4cc529ba8d6.png

Simulational Animations#

Neumann BC \((r = 0.9, h=0)\)

from IPython.display import Image
Image(url='plots/5/5b/population_neumannr0.gif')

Neumann BC \((r = 0.9, h=0.5)\)

Image(url='plots/5/5b/population_neumannr5.gif')

Neumann BC \((r = 0.9, h=0.9)\)

Image(url='plots/5/5b/population_neumannr9.gif')

Neumann BC \((r = 0.9, h=0.2)\)

Image(url='plots/5/5b/population1_neumann.gif') 

Dirichlet BC \((r = 0.9, h=0.2)\)

Image(url='plots/5/5b/population_dirc.gif')

Plotting Diffusion#

compare_sizes = {} 
my_cmap = plt.get_cmap('inferno')
loc = 'modelled data/hunting'
name='neumann_r9'
modelled_frames = np.load(f'{loc}/{name}.npy')
compare_sizes[name] = np.array([np.average(modelled_frames[i]) for i in range(0, 3600, 2)])
show_frame_id = [int(2000/9)*i for i in range(0, 8)]
fig, ax = plt.subplots(figsize=(14,6))
vmax = np.max(modelled_frames[-1])

for i in range(len(show_frame_id)):
    plt.subplot(240 + i + 1, anchor='C')
    im = plt.imshow(modelled_frames[show_frame_id[i]], cmap=my_cmap, vmin=0, vmax=vmax)
    plt.xticks([]), plt.yticks([])
    plt.title(f't = {f*dt*show_frame_id[i]:.2f} sec')

im = plt.imshow(modelled_frames[2900], cmap=my_cmap, vmin=0, vmax=vmax)
plt.title(f't = {f*dt*2900:.2f} sec')
fig.subplots_adjust(right=0.8)
cbar_ax = fig.add_axes([0.84, 0.12, 0.05, 0.65])
fig.colorbar(im, cax=cbar_ax)
plt.title('Population\ndensity'+r' (m$^{-2})$'+'\n')
plt.savefig(f'plots/5b/{name}_spread.png', bbox_inches='tight')
plt.show()
_images/c4debf13ae0c12631742a97257fd92323d22ce5d28eec5ff85c9e93f57e8419a.png
labels = {
    'neumann_r0': 'Neumann BC (r = 0.9, h=0)',
    'neumann_r5': 'Neumann BC (r = 0.9, h=0.5)',
    'neumann_r9': 'Neumann BC (r = 0.9, h=0.9)',
    'neumann': 'Neumann BC (r = 0.9, h=0.2)',
    'dirchlet': 'Dirichlet BC (r = 0.9, h=0.2)'
}
plt.figure(figsize=(8,6))
for model in compare_sizes:
    plt.plot(np.linspace(0, times*dt, 1800), compare_sizes[model], label=labels[model])

plt.xlabel('Time (s)')
plt.ylabel(r'Average Population Density (m$^{-2}$)')
plt.legend()
plt.savefig(f'plots/5b/all_sizes.png', bbox_inches='tight')
<matplotlib.legend.Legend at 0x1deea094df0>
_images/d356dcd147dc3165122aa4477296d19252b0f86fb070af78b70c53b316ed4b65.png